Ac Transmission

broken image


Advance Auto makes finding parts for your AC simple. Easily sort and compare top rated Transmission & Drivetrain brands that will fit your AC model. Shop with confidence by reading star ratings and reviews left by our valued customers. We offer a wide selection of AC replacement or OEM Transmission & Drivetrain parts for you to choose from. At AC Transmission, we are committed to earning customer loyalty through our unparalleled service, competitive prices, and extensive industry knowledge. From regular maintenance and transmission repair to complete transmission rebuilds, AC Transmission has the skilled and experience to handle any job.

Transmission

AC Transmission total car care centers are the cleanest and best equipped transmission shops in the region. We have state of the art trained technicians equipped with the latest computer scanners and diagnostic equipment allowing us to solve the toughest problems with today's computerized transmissions and transfer cases.

AC Transmissions serves South Bay residents seeking high quality, professional transmission repair, transmission service, general automotive repair and tires. Established in 2006, we have catered to vehicle owners seeking to repair or upgrade their vehicle's transmissions, clutches, fly wheels and more. Atomic element.

We are located on Carson St. in Torrance which is conveniently located for residents in Lomita, Carson, Gardena, Redondo Beach, and, of course, Torrance!

For a free estimate on your transmission service, feel free to call AC Transmissions in Torrance at (310) 212-7202 or stop by for a visit!

A flexible alternating current transmission system (FACTS) is a system composed of static equipment used for the alternating current (AC) transmission of electrical energy. It is meant to enhance controllability and increase power transfer capability of the network. It is generally a power electronics-based system.

FACTS is defined by the Institute of Electrical and Electronics Engineers (IEEE) as 'a power electronic based system and other static equipment that provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability'.[1]

Transmission

According to Siemens, 'FACTS Increase the reliability of AC grids and reduce power delivery costs. They improve transmission quality and efficiency of power transmission by supplying inductive or reactive power to grid.[2]

Technology[edit]

Transmission on a no-loss line.
Series compensation.
Shunt compensation.

Shunt compensation[edit]

In shunt compensation, power system is connected in shunt (parallel) with the FACTS. It works as a controllable current source. Shunt compensation is of two types:

Shunt capacitive compensation
This method is used to improve the power factor. Whenever an inductive load is connected to the transmission line, power factor lags because of lagging load current. To compensate, a shunt capacitor is connected which draws the current leading the source voltage. The net result is improvement in power factor.
Shunt inductive compensation
This method is used either when charging the transmission line, or, when there is very low load at the receiving end. Due to very low, or no load – very low current flows through the transmission line. Shunt capacitance in the transmission line causes voltage amplification (Ferranti effect). The receiving end voltage may become double the sending end voltage (generally in case of very long transmission lines). To compensate, shunt inductors are connected across the transmission line. The power transfer capability is thereby increased depending upon the power equation
P=(EVX)sin⁡(δ){displaystyle P=left({frac {EV}{X}}right)sin(delta )}
where δ{displaystyle delta } is the power angle.

Theory[edit]

In the case of a no-loss line, voltage magnitude at the receiving end is the same as voltage magnitude at the sending end: Vs = Vr=V.Transmission results in a phase lag δ{displaystyle delta } that depends on line reactance X.

Vs_=Vcos⁡(δ2)+jVsin⁡(δ2)Vr_=Vcos⁡(δ2)−jVsin⁡(δ2)I_=Vs_−Vr_jX=2Vsin⁡(δ2)X{displaystyle {begin{aligned}{underline {V_{s}}}&=Vcos left({frac {delta }{2}}right)+jVsin left({frac {delta }{2}}right){underline {V_{r}}}&=Vcos left({frac {delta }{2}}right)-jVsin left({frac {delta }{2}}right){underline {I}}&={frac {{underline {V_{s}}}-{underline {V_{r}}}}{jX}}={frac {2Vsin {left({frac {delta }{2}}right)}}{X}}end{aligned}}}

As it is a no-loss line, active power P is the same at any point of the line:

Ps=Pr=P=Vcos⁡(δ2)⋅2Vsin⁡(δ2)X=V2Xsin⁡(δ){displaystyle P_{s}=P_{r}=P=Vcos left({frac {delta }{2}}right)cdot {frac {2Vsin {left({frac {delta }{2}}right)}}{X}}={frac {V^{2}}{X}}sin(delta )}

Reactive power at sending end is the opposite of reactive power at receiving end:

Qs=−Qr=Q=Vsin⁡(δ2)⋅2Vsin⁡(δ2)X=V2X(1−cos⁡δ){displaystyle Q_{s}=-Q_{r}=Q=Vsin left({frac {delta }{2}}right)cdot {frac {2Vsin left({frac {delta }{2}}right)}{X}}={frac {V^{2}}{X}}(1-cos delta )}

As δ{displaystyle delta } is very small, active power mainly depends on δ{displaystyle delta } whereas reactive power mainly depends on voltage magnitude.

Ac transmission addison

Series compensation[edit]

FACTS for series compensation modify line impedance: X is decreased so as to increase the transmittable active power. However, more reactive power must be provided.
P=V2X−Xcsin⁡(δ)Q=V2X−Xc(1−cos⁡(δ)){displaystyle {begin{aligned}P&={frac {V^{2}}{X-Xc}}sin(delta )Q&={frac {V^{2}}{X-Xc}}(1-cos(delta ))end{aligned}}}

Shunt compensation[edit]

Reactive current is injected into the line to maintain voltage magnitude. Transmittable active power is increased but more reactive power is to be provided.
P=2V2Xsin⁡(δ2)Q=4V2X[1−cos⁡(δ2)]{displaystyle {begin{aligned}P&={frac {2V^{2}}{X}}sin left({frac {delta }{2}}right)Q&={frac {4V^{2}}{X}}left[1-cos left({frac {delta }{2}}right)right]end{aligned}}}

Examples of series compensation[edit]

Examples of FACTS for series compensation (schematic)
Transmission

AC Transmission total car care centers are the cleanest and best equipped transmission shops in the region. We have state of the art trained technicians equipped with the latest computer scanners and diagnostic equipment allowing us to solve the toughest problems with today's computerized transmissions and transfer cases.

AC Transmissions serves South Bay residents seeking high quality, professional transmission repair, transmission service, general automotive repair and tires. Established in 2006, we have catered to vehicle owners seeking to repair or upgrade their vehicle's transmissions, clutches, fly wheels and more. Atomic element.

We are located on Carson St. in Torrance which is conveniently located for residents in Lomita, Carson, Gardena, Redondo Beach, and, of course, Torrance!

For a free estimate on your transmission service, feel free to call AC Transmissions in Torrance at (310) 212-7202 or stop by for a visit!

A flexible alternating current transmission system (FACTS) is a system composed of static equipment used for the alternating current (AC) transmission of electrical energy. It is meant to enhance controllability and increase power transfer capability of the network. It is generally a power electronics-based system.

FACTS is defined by the Institute of Electrical and Electronics Engineers (IEEE) as 'a power electronic based system and other static equipment that provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability'.[1]

According to Siemens, 'FACTS Increase the reliability of AC grids and reduce power delivery costs. They improve transmission quality and efficiency of power transmission by supplying inductive or reactive power to grid.[2]

Technology[edit]

Transmission on a no-loss line.
Series compensation.
Shunt compensation.

Shunt compensation[edit]

In shunt compensation, power system is connected in shunt (parallel) with the FACTS. It works as a controllable current source. Shunt compensation is of two types:

Shunt capacitive compensation
This method is used to improve the power factor. Whenever an inductive load is connected to the transmission line, power factor lags because of lagging load current. To compensate, a shunt capacitor is connected which draws the current leading the source voltage. The net result is improvement in power factor.
Shunt inductive compensation
This method is used either when charging the transmission line, or, when there is very low load at the receiving end. Due to very low, or no load – very low current flows through the transmission line. Shunt capacitance in the transmission line causes voltage amplification (Ferranti effect). The receiving end voltage may become double the sending end voltage (generally in case of very long transmission lines). To compensate, shunt inductors are connected across the transmission line. The power transfer capability is thereby increased depending upon the power equation
P=(EVX)sin⁡(δ){displaystyle P=left({frac {EV}{X}}right)sin(delta )}
where δ{displaystyle delta } is the power angle.

Theory[edit]

In the case of a no-loss line, voltage magnitude at the receiving end is the same as voltage magnitude at the sending end: Vs = Vr=V.Transmission results in a phase lag δ{displaystyle delta } that depends on line reactance X.

Vs_=Vcos⁡(δ2)+jVsin⁡(δ2)Vr_=Vcos⁡(δ2)−jVsin⁡(δ2)I_=Vs_−Vr_jX=2Vsin⁡(δ2)X{displaystyle {begin{aligned}{underline {V_{s}}}&=Vcos left({frac {delta }{2}}right)+jVsin left({frac {delta }{2}}right){underline {V_{r}}}&=Vcos left({frac {delta }{2}}right)-jVsin left({frac {delta }{2}}right){underline {I}}&={frac {{underline {V_{s}}}-{underline {V_{r}}}}{jX}}={frac {2Vsin {left({frac {delta }{2}}right)}}{X}}end{aligned}}}

As it is a no-loss line, active power P is the same at any point of the line:

Ps=Pr=P=Vcos⁡(δ2)⋅2Vsin⁡(δ2)X=V2Xsin⁡(δ){displaystyle P_{s}=P_{r}=P=Vcos left({frac {delta }{2}}right)cdot {frac {2Vsin {left({frac {delta }{2}}right)}}{X}}={frac {V^{2}}{X}}sin(delta )}

Reactive power at sending end is the opposite of reactive power at receiving end:

Qs=−Qr=Q=Vsin⁡(δ2)⋅2Vsin⁡(δ2)X=V2X(1−cos⁡δ){displaystyle Q_{s}=-Q_{r}=Q=Vsin left({frac {delta }{2}}right)cdot {frac {2Vsin left({frac {delta }{2}}right)}{X}}={frac {V^{2}}{X}}(1-cos delta )}

As δ{displaystyle delta } is very small, active power mainly depends on δ{displaystyle delta } whereas reactive power mainly depends on voltage magnitude.

Series compensation[edit]

FACTS for series compensation modify line impedance: X is decreased so as to increase the transmittable active power. However, more reactive power must be provided.
P=V2X−Xcsin⁡(δ)Q=V2X−Xc(1−cos⁡(δ)){displaystyle {begin{aligned}P&={frac {V^{2}}{X-Xc}}sin(delta )Q&={frac {V^{2}}{X-Xc}}(1-cos(delta ))end{aligned}}}

Shunt compensation[edit]

Reactive current is injected into the line to maintain voltage magnitude. Transmittable active power is increased but more reactive power is to be provided.
P=2V2Xsin⁡(δ2)Q=4V2X[1−cos⁡(δ2)]{displaystyle {begin{aligned}P&={frac {2V^{2}}{X}}sin left({frac {delta }{2}}right)Q&={frac {4V^{2}}{X}}left[1-cos left({frac {delta }{2}}right)right]end{aligned}}}

Examples of series compensation[edit]

Examples of FACTS for series compensation (schematic)
  • Static synchronous series compensator (SSSC)
  • Thyristor-controlled series capacitor (TCSC): a series capacitor bank is shunted by a thyristor-controlled inductor reactor
  • Thyristor-controlled series reactor (TCSR): a series reactor bank is shunted by a thyristor-controlled reactor
  • Thyristor-switched series capacitor (TSSC): a series capacitor bank is shunted by a thyristor-switched reactor
  • Thyristor-switched series reactor (TSSR): a series reactor bank is shunted by a thyristor-switched reactor

Examples of shunt compensation[edit]

Examples of FACTS for shunt compensation (schematic)
  • Static synchronous compensator (STATCOM); previously known as a static condenser (STATCON)
  • Static VAR compensator (SVC). Most common SVCs are:
    • Thyristor-controlled reactor (TCR): reactor is connected in series with a bidirectional thyristor valve. The thyristor valve is phase-controlled. Equivalent reactance is varied continuously.
    • Thyristor-switched reactor (TSR): Same as TCR but thyristor is either in zero- or full- conduction. Equivalent reactance is varied in stepwise manner.
    • Thyristor-switched capacitor (TSC): capacitor is connected in series with a bidirectional thyristor valve. Thyristor is either in zero- or full- conduction. Equivalent reactance is varied in stepwise manner.
    • Mechanically-switched capacitor (MSC): capacitor is switched by circuit-breaker. It aims at compensating steady state reactive power. It is switched only a few times a day.

Ac Transmission Line Voltage Is

See also[edit]

References[edit]

In-line references
  1. ^Proposed terms and definitions for flexible AC transmission system(FACTS), IEEE Transactions on Power Delivery, Volume 12, Issue 4, October 1997, pp. 1848–1853. doi:10.1109/61.634216
  2. ^Flexible AC Transmission Systems (FACTS) - Siemens
General references

Ac Transmission Line Loss Calculator

  • Narain G. Hingorani, Laszlo Gyugyi Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, Wiley-IEEE Press, December 1999. ISBN978-0-7803-3455-7
  • Xiao-Ping Zhang, Christian Rehtanz, Bikash Pal, Flexible AC Transmission Systems: Modelling and Control, Springer, March 2006. ISBN978-3-540-30606-1. https://link.springer.com/book/10.1007%2F3-540-30607-2
  • Xiao-Ping Zhang, Christian Rehtanz, Bikash Pal, Flexible AC Transmission Systems: Modelling and Control, 2nd Edition, Springer, Feb 2012, ISBN978-3-642-28240-9 (Print) 978-3-642-28241-6 (Online), https://link.springer.com/book/10.1007%2F978-3-642-28241-6
  • A. Edris, R. Adapa, M.H. Baker, L. Bohmann, K. Clark, K. Habashi, L. Gyugyi, J. Lemay, A. Mehraban, A.K. Myers, J. Reeve, F. Sener, D.R. Torgerson, R.R. Wood, Proposed Terms and Definitions for Flexible AC Transmission System (FACTS), IEEE Transactions on Power Delivery, Vol. 12, No. 4, October 1997. doi: 10.1109/61.634216[dead link]http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00634216

Ac Transmission Addison Il

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Flexible_AC_transmission_system&oldid=1017751403'




broken image